Clinical Monograph

ToeMATE® Hammertoe Implant

Comparison of Biomechanical Strength

Background:

By some estimates, 7% to 20% Americans aged 31-60 years and 10% to 11% of Americans aged 60 years or older have hammertoe deformity.¹ Multiple implant devices are available for surgical treatment of a hammertoe deformity.² Comparative biomechanical testing between the Arthrosurface ToeMate® and a leading competitive hammertoe implant was conducted to assess the performance of these devices in the most clinically relevant attributes.

ToeMATE[®] (TM):

arthrosurface[®]

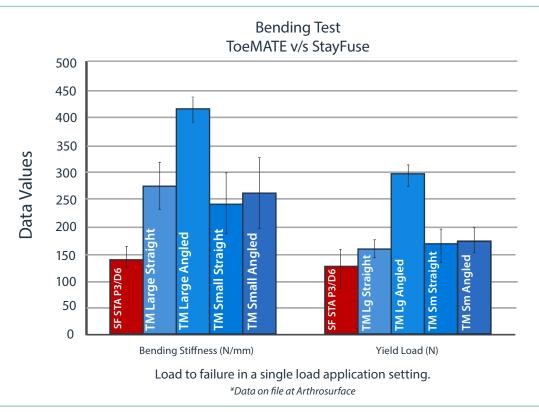
The ToeMate[®] implant device consists of two intramedullary bone screws and a taper lock pin, which provides a press-fit connection between the two screws. The implant is offered in two sizes with a straight (0 degree) and angled (10 degree) option.

StayFuse[®] (SF):

The StayFuse[®] implant device consists of two intramedullary bone screws that interlock via a ratcheted snap-in mechanism. The implant is offered in multiple sizes but only with a straight (0 degree) option.

Fatigue Test ToeMATE v/s StayFuse 10,000,000 1,000,000 100.000 10,000 ТМ ТМ TM ТМ LG LG Sm Sm **0°** 10° **0°** SF STA 10° 0 P3/D6

Number of cycles survived at a Load of 228 N. *Data on file at Arthrosurface


Fatigue Test:

- This test was performed to simulate the repetitve loads that the toes might experience during normal, day to day activities prior to bony or fibrous union.
- Studies report that the load across the PIP joint can reach 169 N.³
- Representing a 1.3X safety factor, all devices were tested at an applied load of 228 N in the fatigue test setup.
- The largest StayFuse[®] implant fractured @ 2,109 cycles; whereas the largest ToeMate[®] implant survived 2.5 million cycles with no observed failure. The smallest ToeMate[®] implant survived greater than 10,000 cycles before failure.
- The smallest ToeMate[®] implant was at least 5X more durable and the largest ToeMate[®] implant was 1000X more durable than the largest StayFuse[®] implant.

Bending Test:

This test was performed to evaluate the rigidity of the implant construct and its ability to resist bending loads. **The bending stiffness** (N/mm) or rigidity of the ToeMate[®] implant was at least 1.8X higher than that of the StayFuse[®] implant and the yield load (N) or resistance to bending was at least 1.3X higher.

Pullout Strength Test:

The axial pullout force required to pull or disengage the screw out of a 20 PCF sawbones model for the ToeMATE[®] small and large screws was higher by at least 35% compared to the largest StayFuse[®] screw.

Dissasembly Strength Test:

Both the ToeMate[®] and the StayFuse[®] hammertoe implants consist of two intramedullary screw components that are assembled intraoperatively resulting in a single connected intramedullary screw device. The disassembly strength of the ToeMate[®] and StayFuse[®] hammertoe implants was found to be within the same range of values, with no observed statistically significant differences between the means.

Summary:

The ToeMate[®] implant has superior mechanical properties compared to the StayFuse[®] implant, thus providing a biomechanical advantage for a stiff, strong and immobile PIPJ fixation. It is well accepted in orthopaedic medical literature that in vitro biomechanical performance of an implant determines its in vivo clinical performance. In a retrospective clinical review of the StayFuse[®] hammertoe implant in a series of 38 patients, only 60.5% patients showed a bony or fibrous union with a complication rate of 55.3%.⁴ Based on its superior mechanical properties, the ToeMate[®] implant is expected to provide improved clinical results.

References:

- 1. Schuberth, John M. "Hammer toe syndrome." The Journal of foot and ankle surgery 38.2 (1999): 166-178.
- 2. Moon, Jared L., et al. "Digital arthrodesis: current fixation techniques." Clinics in podiatric medicine and surgery 28.4 (2011): 769-783.
- 3. Stokes, I. A., W. C. Hutton, and J. R. Stott. "Forces acting on the metatarsals during normal walking." Journal of anatomy 129.Pt 3 (1979): 579.
- 4. Ellington, J. Kent, et al. "Radiographic analysis of proximal interphalangeal joint arthrodesis with an intramedullary fusion device for lesser toe deformities." Foot & ankle international 31.5 (2010): 372-376.

For additional product information, including indications, contraindications, warnings, precautions and potential adverse effects, please visit www.arthrosurface.com.