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Each year, approximately 400,000 Americans un-
dergo a spinal fusion operation for the treatment of 
neck or back pain, radiculopathy, and/or myelopa-

thy.77 These operations account for the highest aggregate 
hospital cost of any surgical procedure in America, esti-
mated at $13 billion in 2011.89 Consequently, demonstra-
tion of clinical efficacy is paramount given increasing 
scrutiny of cost-effective care. Prior studies have suggested 
that clinical improvement following spinal fusion surgery 
is often in accordance with the radiological success of fu-
sion, as defined by continuous bony union across the fu-

sion site.3,59,87 For this reason, emphasis has been placed on 
reducing the rates of nonunion, or pseudarthrosis, which 
are reported to be as high as 81% in some small series.9,20,​

29,​32​,64,82 Interventions to accomplish this goal include pre-
operatively addressing risk factors (e.g., diabetes, chronic 
steroid use, and cigarette use)51 and improving operative 
technique (e.g., adequate decortication, removal of inter-
posing soft tissues, and sufficient bone graft).12 Addition-
ally, new technologies are continuously being investigated 
to enhance the fusion rate, including the use of recombi-
nant human growth factors (e.g., bone morphogenetic pro-
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OBJECTIVE  Nonunion is a common complication of spinal fusion surgeries. Electrical stimulation technologies 
(ESTs)—namely, direct current stimulation (DCS), capacitive coupling stimulation (CCS), and inductive coupling stimula-
tion (ICS)—have been suggested to improve fusion rates. However, the evidence to support their use is based solely on 
small trials. Here, the authors report the results of meta-analyses of the preclinical and clinical data from the literature to 
provide estimates of the overall effect of these therapies at large and in subgroups.
METHODS  A systematic review of the English-language literature was performed using PubMed, Embase, and Web of 
Science databases. The query of these databases was designed to include all preclinical and clinical studies examining 
ESTs for spinal fusion. The primary endpoint was the fusion rate at the last follow-up. Meta-analyses were performed 
using a Freeman-Tukey double arcsine transformation followed by random-effects modeling.
RESULTS  A total of 33 articles (17 preclinical, 16 clinical) were identified, of which 11 preclinical studies (257 animals) 
and 13 clinical studies (2144 patients) were included in the meta-analysis. Among preclinical studies, the mean fusion 
rates were higher among EST-treated animals (OR 4.79, p < 0.001). Clinical studies similarly showed ESTs to increase 
fusion rates (OR 2.26, p < 0.001). Of EST modalities, only DCS improved fusion rates in both preclinical (OR 5.64, p 
< 0.001) and clinical (OR 2.13, p = 0.03) populations; ICS improved fusion in clinical studies only (OR 2.45, p = 0.014). 
CCS was not effective at increasing fusion, although only one clinical study was identified. A subanalysis of the clinical 
studies found that ESTs increased fusion rates in the following populations: patients with difficult-to-fuse spines, those 
who smoke, and those who underwent multilevel fusions.
CONCLUSIONS   The authors found that electrical stimulation devices may produce clinically significant increases in 
arthrodesis rates among patients undergoing spinal fusion. They also found that the pro-arthrodesis effects seen in 
preclinical studies are also found in clinical populations, suggesting that findings in animal studies are translatable. Ad-
ditional research is needed to analyze the cost-effectiveness of these devices.
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tein–2),27,43,76 mesenchymal stem cells,79 novel bone graft 
substitutes,31,73 and dynamic instrumentation.65,91 Postop-
erative electrical stimulation therapy has also been sug-
gested as an attractive adjuvant therapy to enhance or ac-
celerate bony union.4,49

The use of electrical stimulation therapy to induce fu-
sion has been investigated clinically since at least 1812, 
when Birch successfully treated a patient with tibial non-
union using “[s]hocks of electric fluid . . . passed [daily] 
through the space between the ends of the bones both in 
direction of the length of the limb and that of its thick-
ness.”50 A considerable body of evidence has since been 
generated to support the general concept that electrical 
energy influences living bone (as well as other biologi-
cal tissues).6 Notably, in the 1950s, Fukada and Yasuda 
described the piezoelectric effect of bone, defined as the 
generation of electric potentials in bone subjected to me-
chanical stresses. Using a custom galvanometer, they doc-
umented an electrical potential across the stressed bone, 
with the compressed bone being electronegative and the 
side under tension being electropositive.44 Subsequently, 
Friedenberg and Brighton described the bioelectric po-
tentials in bone, in which areas of bone undergoing ac-
tive repair or growth are electronegative relative to areas 

at rest.40,41 Therapeutic electrical stimulation devices are 
based on these biophysical principles—namely, that the 
external application of an electrical stimulus can stimu-
late bone growth through the induction of a negative bio-
electric potential.

There are currently 3 types of electrical stimulation 
therapies used in spinal fusion: direct current stimulation 
(DCS), capacitive coupling stimulation (CCS), and induc-
tive coupling stimulation (ICS), also known as pulsed 
electromagnetic field (PEMF) therapy (Fig. 1). Conven-
tionally, DCS involves the implantation of cathodes (nega-
tive electrodes) into the prospective fusion mass and an 
anode (positive electrode) into the adjoining soft tissue. A 
continuous electrical current between 5 and 20 mA is then 
delivered to the fusion site via a subcutaneously implanted 
electric generator; the lifetime of this current is dictated 
by the charge size of the implanted battery, although most 
devices operate for a minimum of 6 months.16,39,42 CCS, 
in contrast to DCS, is completely noninvasive and em-
ploys two capacitive plates placed on the skin on opposite 
sides of the fusion site. Alternating current is applied to 
the plates, setting up an oscillating electric field (1–100 
mV/cm). As the battery pack is external, it may be replaced 
and recharged, allowing for continuous use (24 hours/day) 

FIG. 1. Conceptual illustrations of the 3 types of electrical stimulation therapies used in spinal fusion. A: Posterolateral L3–5 
inter–transverse process spinal fusion using bone graft, without electrical stimulation. B–D: Same procedure illustrating postoper-
ative adjuvant therapy with DCS (B), CCS (C), or ICS (D), sometimes referred to as PEMF. In B, the electric generator is typically 
implanted subcutaneously. In C and D, the electric generators are externally located. Copyright Ethan Cottrill. Published with 
permission. Figure is available in color online only.
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until there is radiological confirmation of fusion. Lastly, 
ICS employs electromagnetic coils placed over the fusion 
site. Alternating current applied to these coils induces an 
electromagnetic field covering the fusion site.83 Compared 
to CCS, ICS devices require shorter daily usage, with only 
30 minutes to 2 hours of continuous use required per day 
until radiological confirmation of fusion is established. 
The mechanisms of action and the relative technical ad-
vantages and disadvantages of these 3 therapies are sum-
marized in Table 1.1,7,8,10,11,16,17,19,21,23,30,37,66,85,88,92,93

Although prior reviews have described the effects of 
electrical stimulation therapies on spinal fusion, none to 
date have systematically evaluated both the preclinical and 
clinical literature of all 3 available technologies. In this ar-
ticle, we perform such a review as a means of compiling 
the current evidence and validating the translatability of 
results achieved using these technologies in animal mod-
els. We set out to evaluate the available English-language 
literature for all 3 technologies, asking of each one: 1) To 
what degree does the technology improve bony fusion in 
animal models? 2) To what degree does the technology 
facilitate bony fusion in humans? Additionally, we report 
the results of a meta-analysis of the available clinical stud-
ies to provide an estimate of the overall effect at large and 
in subgroups.

Methods
Electronic Literature Search

A systematic review of the literature was performed us-
ing PubMed, Embase, and Web of Science databases. The 
search query was designed to obtain all of the available in 
vivo data (preclinical and clinical) examining the effect 
of electrical stimulation therapies on spinal fusion. The 
query for the PubMed database was as follows: (spinal 
fusion[mesh] OR spine fusion*[tw] OR spinal fusion*[tw] 
or spinal arthrodes*[tw] OR cervical fusion*[tw] OR lum-
bar fusion*[tw] OR lumbosacral fusion*[tw] OR interbody 
fusion*[tw] OR posterolateral fusion*[tw] OR cervical 
arthrodes*[tw] OR lumbar arthrodes*[tw] OR lumbosacral 
arthrodes*[tw] OR interbody arthrodes*[tw] OR postero-
lateral arthrodes*[tw]) AND (electric stimulation[mesh] 
OR electric stimulation therapy[mesh] OR electromag-
netic fields[mesh] OR “electrical stimulation”[tw] OR 
“pulsed electromagnetic field*”[tw] OR “electromagnetic 
pulsing*”[tw] OR “magnetic fields*”[tw] OR “direct cur-
rent stimulation*”[tw] OR “bone growth stimulation*”[tw] 
OR “electrical current*”[tw] OR “capacitively coupl*”[tw] 
OR “capacitive coupl*”[tw] OR “capacitive stimulat*”[tw] 
OR “inductively coupl*”[tw] OR “inductive coupl*”[tw] 
OR “inductive stimulat*”[tw]). This query was stylisti-
cally modified for use in the Embase and Web of Science 
databases. The bibliographies of the included studies were 
also queried for additional sources.

Included studies were preclinical or clinical peer-re-
viewed publications with full English-language text avail-
ability that evaluated the effects of one or more electrical 
stimulation therapies on spinal fusion. We defined electri-
cal stimulation as the therapeutic use of electromagnetic 
energy (including direct current, capacitive coupling, and 
inductive coupling) with the expressed intent of promot-

ing bony fusion after instrumented or noninstrumented 
spinal fusion. Studies were excluded if they examined a 
surgical model other than spinal fusion or if they mixed 
the results of spinal fusion with other surgical models. 
Eligible studies were screened against these criteria by 
two reviewers (E.C. and Z.P.); a third reviewer (A.K.A.) 
served as a referee, resolving any discrepancies between 
the first two reviewers. Critical Appraisal Checklists ob-
tained from the Joanna Briggs Institute at The University 
of Adelaide were used to assess the quality of the clinical 
studies included in the meta-analysis.71 Because preclini-
cal studies are all classified as level of evidence V, a simi-
lar appraisal was not conducted for them. Additionally, 
the QUOROM (Quality of Reporting of Meta-analyses) 
checklist was used for this systematic review and meta-
analysis.70

Data Extraction
Studies meeting the inclusion criteria were reviewed 

to extract details regarding the type of electrical stimula-
tion, specifications of the electrical therapy, means of de-
termining bony fusion, and the overall fusion rate at last 
follow-up. For preclinical studies, we also recorded details 
about the animal species and surgical model employed. 
For clinical studies, we included details on the patient de-
mographics and the surgical approach.

For both preclinical and clinical studies, the primary 
endpoint was the fusion rate at last follow-up. In preclini-
cal studies, we defined this as the total number of levels 
fused divided by the total number of levels included in the 
prospective fusion mass. In clinical studies, we defined the 
fusion rate as that derived from the proportion of patients 
experiencing a successful radiological fusion at the last 
follow-up visit. The definition and method of assessment 
of fusion were recorded for each study.

Statistical Analysis
Statistical meta-analyses were performed using R ver-

sion 3.4.2 (The R Foundation for Statistical Computing). 
Separately for the preclinical and clinical studies, we gen-
erated mean fusion rates and odds ratios using the Free-
man-Tukey double arcsine transformation, a previously 
established method for normalizing proportions with vari-
ance stabilization.38 A random-effects meta-analysis was 
then employed to give a pooled estimate of the effect of 
electrical stimulation on fusion rates. We elected to forego 
a numbers-needed-to-treat analysis based on these results, 
as prior reports have demonstrated such estimates to be 
commonly misleading.81 Using this methodology, we also 
performed subgroup analyses of the clinical data based on 
smoking status, surgical history (index vs revision proce-
dure), use of interbody devices, region fused, type of bone 
graft, use of instrumentation, and number of levels fused. 
For all analyses, an a of 0.05 was used as the definition of 
statistical significance.

Results
Our search identified 340 unique articles, and 47 of 

these met our inclusion criteria (Fig. 2). After reviewing 
the full texts, we included 17 preclinical studies15,22,​25,​28,​
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35–37,​46,​48,​52,​54–56,​67,​75,​86,94 and 16 clinical studies.5,14,​26,​34,​47,​53,​57,​

60,​63,​68,​69,​72,​74,​78,​84,90 Among the 14 excluded articles, the rea-
sons for exclusion were lack of full-text availability (n = 
10), surgical model other than spinal fusion (n = 2), and 
lack of an English-language translation (n = 2). Of these 
33 articles, 11 preclinical (257 animals; 273 levels) and 13 
clinical (2144 patients) studies were ultimately included 
in the meta-analysis. The clinical studies were deemed to 
have sufficient quality to be included in the meta-analysis 
(Critical Appraisal Checklists). The included articles are 
summarized in Tables 2 and 3, as well as in Supplemental 
Tables 1 and 2. Supplemental Fig. 1 plots these studies by 
year of publication, illustrating the dearth of recent studies.

Overall Effect of Electrical Stimulation Technologies on 
Spinal Fusion

In the preclinical literature, the mean fusion rates were 
higher among animals treated with electrical stimulation 
therapy (77.7%) than among controls (42.0%). Across all 
studies, the use of electrical stimulation produced a nearly 
fivefold increase in the odds of a successful fusion (OR 
4.79 [95% CI 2.51–9.16], p < 0.001) (Table 4). In the clini-
cal literature, electrical stimulation similarly was shown 
to produce higher rates of fusion versus controls in which 
no electrical stimulation therapy was administered (84.9% 
vs 73.4%, respectively), although the overall effect was 
smaller than in the preclinical literature (OR 2.26 [95% CI 
1.48–3.44], p < 0.001) (Table 4). Figure 3A illustrates the 
random-effects meta-analysis of the fusion rates from all 
clinical studies.

Effect of DCS on Spinal Fusion
Eleven preclinical and 9 clinical studies investigating 

the effect of DCS on spinal fusion were identified, and 
8 preclinical and 6 clinical studies were included in the 
meta-analysis.

Preclinical Data
The preclinical studies (Table 2) involved rat (n = 1), 

rabbit (n = 4), dog (n = 2), pig (n = 1), sheep (n = 1), goat (n 
= 1), and monkey (n = 1) spinal fusion models. All surgi-
cal models involved one-level fusions of the lumbar spine, 
with 3 using posterior facet joint fusion, 5 using postero-
lateral inter–transverse process fusion, and 3 using inter-
body fusion. Among these studies, 11 used autograft, 1 
used allograft, and 1 used synthetic bone graft; 3 of the 
studies employed instrumentation in the fusion construct. 
All but one study used implantable electrodes in the fu-
sion beds. The remaining study routed electrical current 
through pedicle screws and rods.67

The reported fusion rates ranged between 70% and 
100% for the treatment group and between 0% and 73% 
for controls (Supplemental Fig. 2A). On meta-analysis, 
the mean fusion rate was found to be significantly higher 
in DCS-treated levels than in controls (OR 5.64 [95% CI 
2.64–12.06], p < 0.001) (Table 4).

Clinical Data
Nine clinical studies examined the effects of DCS on 

spinal fusion: 8 studies in adult cohorts and 1 study in a 
pediatric cohort (Table 3). Four studies examined its use 
in patients with difficult-to-fuse spines using the follow-
ing definitions: 1) age > 60 years;5 2) multiple prior spine 
surgeries, failed prior fusion, segmental instability, spinal 
stenosis, and/or spondylolisthesis;60 3) multilevel fusion, 
failed prior fusion, and/or grade II or worse spondylolis-
thesis;84 and 4) age > 65 years, presence of rheumatoid 
arthritis, failed prior fusion, infection, and/or immuno-
suppression.90 One study was restricted to index proce-
dures, while 8 included both index or revision procedures. 
Only 1 study employed interbody fusion; the remaining 
8 used solely posterior/posterolateral fusion. The spinal 
segments investigated were cervical in 1 study and lum-
bar/lumbosacral in 8. Six studies used autograft only, and 

FIG. 2. Diagram of the consolidated standards of reporting trials for article selection.
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the remaining 3 used autograft and/or allograft. Instru-
mentation was placed in all patients in 4 studies and in 
some patients in 2 studies; 3 studies used in situ fusion 
only (Table 3).

The fusion rate ranged from 35% to 96% for treated 

patients and from 33% to 86% in controls (Supplemental 
Fig. 3A). In the meta-analysis, patients treated with DCS 
were found to have a significantly higher fusion rate at the 
last follow-up than the control patients (OR 2.13 [95% CI 
1.08–4.21], p = 0.03) (Table 4 and Fig. 3B).

TABLE 4. Mean fusion rates and odds ratios for the preclinical and clinical studies determined by random-effects meta-analysis*

Type of 
EST Type of Study & Authors & Year

Fusion Rate (no. fused/total)†
Cochran’s Q OR (95% CI) & p ValueStimulation Group Control Group

DCS 

Preclinical
  Kahanovitz & Arnoczky, 1990 4/4 0/4 5.45 5.64 (2.64–12.06); p < 0.001
  Bozic, 1999 19/27 11/26
  Toth et al., 2000 13/15 2/7
  Cook et al., 2004 10/11 8/11
  France et al., 2006 7/9 8/16
  Fredericks et al., 2007 2/2 1/3
  MacEwan et al., 2016 1/1 0/1
  Cho et al., 2019 40/40 14/20
  Overall (95% CI) 87.6% (74.2–96.5%) 45.3% (30.0–61.1%)
Clinical
  Kane, 1998 208/229 143/187 13.60 2.13 (1.08–4.21); p = 0.03
  Meril, 1994 113/122 77/103
  Rogozinski & Rogozinski, 1996 51/53 35/41
  Kucharzyk, 1999 62/65 56/65
  Jenis et al., 2000 10/17 18/22
  Andersen et al., 2009 17/48 12/36
  Overall (95% CI) 82.2% (65.8–94.1%) 73.9% (61.7–84.4%)

CCS 
Clinical 0 2.12 (0.87–5.21); p > 0.05
  Goodwin et al., 1999 77/85 77/94
  Overall (95% CI) 90.6% (88.3–95.8%) 81.9% (72.6–89.1%)

ICS 

Preclinical
  Kahanovitz et al., 1994 0/16 0/8 0.03 3.08 (0.88–10.72); p > 0.05
  Glazer et al., 1997 8/10 6/10
  Zhuo et al., 2018 13/16 9/16
  Overall (95% CI) 47.8% (1.1–97.8%) 35.7% (4.9–75.9%)
Clinical
  Mooney, 1990 59/64 36/53 16.17 2.45 (1.20–4.99); p = 0.014
  Marks, 2000 41/42 10/19
  Jenis et al., 2000 14/22 18/22
  Linovitz, 2002 66/104 48/97
  Foley et al., 2008 116/125 104/120
  Coric et al., 2018 201/217 76/92
  Overall (95% CI) 86.0% (74.2–94.6%) 71.2% (56.2–84.1%)

All

Preclinical
  Overall (95% CI) 77.7% (54.2–94.3%) 42.0% (27.5–57.2%) 6.15 4.79 (2.51–9.16); p < 0.001
Clinical
  Overall (95% CI) 84.9% (76.8–91.4%) 73.4% (65.4–80.8%) 29.92 2.26 (1.48–3.44); p < 0.001

Boldface type indicates statistical significance.
* Only studies reporting the fusion rates for both the intervention (i.e., electrical stimulation) and control groups were included in the meta-analysis.
† For preclinical studies, the fusion rate was defined as the number of bilateral vertebral levels fused divided by the total number of levels attempted. For clinical studies, 
the fusion rate was defined as the number of patients experiencing successful fusion divided by the total number of patients undergoing surgery. For the analysis of 
preclinical data, where the fusion rate was 0 in some cases, delta was set to 0.5 (Haldane-Anscombe correction). For clinical studies, where the fusion rate was always 
greater than 0, delta was set to zero.
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Effect of CCS on Spinal Fusion
No preclinical studies were found that described the 

use of CCS in a spinal fusion model, and only 1 clini-
cal study met our inclusion criteria (Table 3). In that 

double-blind randomized controlled trial, Goodwin et al. 
examined the use of CCS in 179 adults undergoing one- 
or two-level fusions in which one of the following tech-
niques was used: anterior lumbar interbody fusion, pos-

FIG. 3. Forest plots demonstrating random-effects meta-analysis of the fusion rates from all clinical studies (A), only clinical stud-
ies examining the effect of DCS on spinal fusion (B), and only clinical studies examining the effect of ICS on spinal fusion (C). Only 
studies reporting fusion rates for intervention (i.e., electrical stimulation) and control groups are included. Figure is available in 
color online only.
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terior lumbar interbody fusion, or posterolateral lumbar 
fusion.47 All patients were instructed to use the stimula-
tion device (precursor of the Biomet OrthoPak [Zimmer 
Biomet]) for 24 hours/day for 9 months or until fusion 
was confirmed radiologically. At the 12-month follow-
up visit, no significant difference in fusion rates was de-
tected between CCS-treated (90.6%) and control (81.9%) 
patients (Table 4).

Effect of ICS on Spinal Fusion
Thirteen total studies—6 preclinical and 7 clinical—

describing the results of ICS met our inclusion criteria. Of 
these, 3 preclinical and 6 clinical studies were included in 
the meta-analysis.

Preclinical Data
Preclinical studies described the effects of ICS in dog 

(n = 3), rabbit (n = 2), and rat (n = 1) models using poste-
rior facet fusion (n = 2) or posterolateral inter–transverse 
process fusion (n = 4) of the lumbar spine. Four studies 
involved one-level procedures, whereas 2 involved multi-
level fusions (≥ 2 levels). All studies used either autograft 
(n = 5) or synthetic bone graft (n = 1); 2 studies used in-
strumentation (Table 2).

The fusion rate varied widely across studies, ranging 
from 0% to 81% in treated groups and from 0% to 60% in 
controls (Supplemental Fig. 2B). In the aggregate, the in-
cluded studies failed to show a significant difference in fu-
sion rates between ICS-treated animals and controls (OR 
3.08 [95% CI 0.88–10.72], p > 0.05) (Table 4).

Clinical Data
All clinical studies investigating the effect of ICS on 

spinal fusion examined adult patients (Table 3). Three 
of the studies examined the effects in only patients with 
difficult-to-fuse spines, defined by the studies as 1) pa-
tients with a herniated nucleus pulposus, degenerative 
disc disease, spondylolisthesis, spinal stenosis, and/or 
those who had undergone a prior failed fusion;14 2) those 
who smoked and/or were undergoing multilevel fusion 
with an allograft;34 or 3) those who were age ≥ 65 years, 
actively smoked, were undergoing multilevel fusion, had 
undergone a prior failed fusion, had diabetes, and/or had 
osteoporosis.26 Two studies restricted patients to those 
without a history of spine surgery, while the remaining 
5 included both index and revision procedures. Three 
studies involved only posterior/posterolateral fusion pro-
cedures, 3 involved only interbody procedures, and 1 
involved either type of procedure. The spinal segments 
investigated were cervical (n = 2) and lumbar/lumbosa-
cral (n = 5). Autograft alone was used in 1 study, allograft 
alone in 1 study, and autograft and/or allograft in 5 stud-
ies. Instrumentation was used in all patients in 4 studies, 
some patients in 2 studies, and none of the patients in 1 
study.

Fusion rates varied between 63% and 98% in the ICS 
group and between 49% and 87% in the control group 
(Supplemental Fig. 3C). Patients receiving ICS were found 
to have significant improvements in overall fusion rate rel-
ative to control patients (OR 2.45 [95% CI 1.20–4.99], p = 
0.014) (Table 4 and Fig. 3C).

Subanalysis of Clinical Data
On meta-analysis, patients receiving some form of elec-

trical stimulation were found to have a 126% increase in 
the odds of a successful fusion by last follow-up compared 
to controls (Fig. 3A). Table 5 summarizes the subgroup 
meta-analyses of the clinical data. The variables investi-
gated include those listed as characteristic of patients with 
difficult-to-fuse spines, patients with a history of smoking, 
those undergoing revision surgery, those in whom inter-
body fusion is performed, and those undergoing a multi-
level fusion, as well as the surgical level that was treated, 
the type of graft material used, and whether instrumenta-
tion was placed.

Notably, one or more electrical stimulation therapies 
resulted in statistically significant increases in the fusion 
rates compared to no stimulation in the following sub-
groups: patients with difficult-to-fuse spines, smokers, 
nonsmokers, patients undergoing index procedures, and 
those undergoing interbody fusions, single-level fusions, 
multilevel fusions, cervical fusions, lumbar/lumbosacral 
fusions, fusions with allograft alone, fusions with instru-
mentation, and fusions without instrumentation. In con-
trast, significant differences could not be detected between 
the fusion rates of patients receiving electrical stimulation 
therapy and controls in the following subgroups: revision 
surgery, posterior/posterolateral fusion subgroups, and au-
tograft alone (Table 5).

Discussion
Spinal fusion is performed in the treatment of spinal 

pathologies of hundreds of thousands of Americans annu-
ally. Although most patients experience good outcomes, 
many experience  nonunion, which can be associated with 
pain, persistent neurological compromise, and need for re-
vision surgery.24 One class of surgical adjuvant therapies 
designed to avoid this outcome is electrical stimulation, in-
cluding DCS, CCS, and ICS. In the current article, we have 
reported on the results of a systematic review and meta-
analysis that evaluated the existing preclinical and clini-
cal literature with the goal of addressing two questions: 1) 
To what degree does the technology improve bony fusion 
in animal models? 2) To what degree does the technol-
ogy facilitate bony fusion in humans? We found that both 
DCS and ICS lead to significant improvements in fusion 
rates in humans and that DCS also produces significant in-
creases in fusion rates in preclinical studies. Considering 
all electrical stimulation modalities as a whole, we found 
that electrical stimulation can significantly increase fusion 
rates among patients undergoing open fusion operations 
for a range of spinal pathologies. Subanalyses suggested 
that this effect persists in patients with difficult-to-fuse 
spines, smokers, those undergoing index procedures, and 
those undergoing interbody fusion. Further analyses inves-
tigating the effects based on the number of levels fused 
and whether instrumentation was used suggested that 
these variables do not alter the fusion benefits of electrical 
stimulation devices (Table 4).

The merits of any technology can be winnowed down 
to two questions: 1) Does it work? 2) Is it an economical 
means of achieving the goal? For medical technologies, 
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TABLE 5. Random-effects subgroup meta-analysis of the clinical data*

Variable
Type of 

EST Authors & Year
Fusion Rate (no. fused/total) Cochran’s 

Q
OR (95% CI) &  

p ValueStimulation Group Control Group

Studies limited to 
difficult-to-fuse 
spines†

DCS

Andersen et al., 2009 17/48 12/36

3.21 2.14 (0.94–4.86);  
p > 0.05

Kucharzyk, 1999 62/65 56/65
Kane, 1988 25/31 15/28
Overall (95% CI) 73.3% (31.3–98.8%) 59.2% (24.9–89.0%)

ICS
Foley et al., 2008 116/125 104/120

0.25 2.34 (1.33–4.10); p = 
0.003Coric et al., 2018 201/217 76/92

Overall (95% CI) 92.4% (89.4–95.0%) 84.6% (79.5–89.1%)

All Overall (95% CI) 82.5% (64.1–95.2%) 70.8% (52.2–86.3%) 3.59 2.18 (1.43–3.32);  
p < 0.001

Smoker

DCS

Meril, 1994 85/92 42/59

4.44 2.46 (0.71–8.55);  
p > 0.05

Rogozinski & Rogozinski, 1996 24/26 14/18
Jenis et al., 2000 5/10 8/13
Overall (95% CI) 83.1% (62.5–96.6%) 70.5% (60.9–79.3%)

ICS

Mooney, 1990 24/27 12/20

8.05 4.48 (0.45–44.26);  
p > 0.05

Marks, 2000 18/19 0/3
Jenis et al., 2000 6/12 8/13
Overall (95% CI) 80.3% (55.2–96.6%) 47.0% (20.2–74.7%)

All Overall (95% CI) 82.2% (68.6–92.5%) 62.5% (49.3–74.8%) 12.50 2.84 (1.00–8.11);  
p = 0.05

Nonsmoker

DCS

Meril, 1994 26/28 14/20

1.45 3.79 (0.99–14.53);  
p = 0.05

Rogozinski & Rogozinski, 1996 27/27 21/23
Jenis et al., 2000 6/7 8/9
Overall (95% CI) 94.1% (82.8–99.6%) 81.9% (67.1–93.0%)

ICS

Mooney, 1990 35/37 24/33

6.37 3.66 (0.34–39.8);  
p > 0.05

Marks, 2000 23/23 10/16
Jenis et al., 2000 7/10 8/9
Overall (95% CI) 91.5% (74.4–99.6%) 71.7% (59.9–82.2%)

All Overall (95% CI) 93.1% (85.0–98.2%) 77.0% (67.3–85.4%) 7.81 3.58 (1.09–11.8);  
p = 0.04

Index surgery (no  
prior back sur-
gery)

DCS
Meril, 1994 101/109 69/92

0.50 3.69 (1.69–8.07); p = 
0.001Rogozinski & Rogozinski, 1996 32/34 24/27

Overall (95% CI) 92.4% (87.6–96.2%) 80.1% (66.1–91.1%)

CCS
Goodwin et al., 1999 77/85 77/94

0 2.12 (0.87–5.21);  
p > 0.05Overall (95% CI) 90.6% (82.3–95.8%) 81.9% (72.6–89.1%)

ICS

Mooney, 1990 59/64 36/53

9.78 5.52 (1.17–25.95);  
p = 0.03

Marks, 2000 38/38 6/14
Linovitz et al., 2002 66/104 48/97
Overall (95% CI) 88.5% (60.6–100%) 55.0% (40.7–69.0%)

All Overall (95% CI) 90.0% (78.9–97.3%) 69.2% (55.6–81.2%) 11.14 3.24 (1.69–6.21); p < 
0.001

Revision surgery 
(prior back 
surgery)

DCS
Meril, 1994 12/13 8/11

0.24 6.56 (0.98–44.0);  
p = 0.05Rogozinski & Rogozinski, 1996 19/19 11/14

Overall (95% CI) 95.7% (83.4–100) 74.2% (56.4–88.6%)

ICS
Marks, 2000 3/4 4/5

0 0.75 (0.03–17.51);  
p > 0.05Overall (95% CI) 75% (19.4–99.4) 80% (28.4–99.5%)

All Overall (95% CI) 92.0% (75.2–99.7%) 74.4% (58.4–87.6%) 1.58 3.68 (0.72–18.73);  
p > 0.05
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TABLE 5. Random-effects subgroup meta-analysis of the clinical data*

Variable
Type of 

EST Authors & Year
Fusion Rate (no. fused/total) Cochran’s 

Q
OR (95% CI) &  

p ValueStimulation Group Control Group

Posterior or postero-
lateral fusion

DCS

Kane, 1988 208/229 143/187

11.34 1.77 (0.78–4.01);  
p > 0.05

Kucharzyk, 1999 62/65 56/65
Andersen et al., 2009 17/48 12/36
Jenis et al., 2000 10/17 18/22
Rogozinski & Rogozinski, 1996 51/53 35/41
Overall (95% CI) 79.4% (56.7–95.1%) 73.6% (57.4–87.1%)

ICS
Jenis et al., 2000 14/22 18/22

3.94 0.95 (0.22–4.11);  
p > 0.05Linovitz et al., 2002 66/104 48/97

Overall (95% CI) 63.3% (54.8–71.4%) 64.7% (32.7–90.6%)

All Overall (95% CI) 77.1% (56.3–92.6%) 74.7% (60.8–86.4%) 16.57 1.51 (0.82–2.79);  
p > 0.05

Interbody fusion

DCS
Meril, 1994 113/122 77/103

0 4.24 (1.88–9.54); p < 
0.001Overall (95% CI) 92.6 (86.5–96.6%) 74.8% (65.2–82.8%)

ICS

Foley et al., 2008 116/125 104/120

5.68 3.54 (1.71–7.31); p = 
0.001

Coric et al., 2018 201/217 76/92
Mooney, 1990 59/64 36/53
Marks, 2000 19/20 6/14
Overall (95% CI) 92.3% (89.6–94.7%) 74.1% (59.9–86.2%)

All Overall (95% CI) 92.3% (90.0–94.4%) 74.8% (64.4–84.0%) 6.08 3.56 (2.08–6.11); p < 
0.001

Single-level fusion

DCS

Kane, 1988 14/16 10/16

0.05 4.96 (2.32–10.63);  
p < 0.001

Meril, 1994 85/93 49/73
Rogozinski & Rogozinski, 1996 16/16 18/20
Overall (95% CI) 92.0% (84.6–97.2%) 72.7% (56.3–86.4%)

ICS
Mooney, 1990 43/46 29/40

1.32 8.77 (1.70–45.28);  
p = 0.01Marks, 2000 18/18 6/12

Overall (95% CI) 95.2% (87.0–99.5%) 64.1% (42.7–82.8%)

All Overall (95% CI) 93.1% (88.5–96.6%) 69.6% (58.8–79.4%) 1.68 5.56 (2.91–10.64);  
p < 0.001

Multilevel (≥2) fusion

DCS

Kane, 1988 11/15 5/12

0.34 3.40 (1.15–10.0);  
p = 0.03

Meril, 1994 23/24 26/28
Rogozinski & Rogozinski, 1996 35/37 17/21
Overall (95% CI) 89.2% (76.1–97.5%) 74.6% (45.5–95.0%)

ICS
Mooney, 1990 16/18 7/13

0.34 9.46 (2.16–41.43);  
p = 0.003Marks, 2000 23/24 4/7

Overall (95% CI) 91.4% (81.4–97.8%) 54.6% (34.0–74.4%)

All Overall (95% CI) 90.4% (83.4–95.6%) 68.0% (46.3–86.2%) 1.88 4.86 (2.03–11.62);  
p < 0.001

Cervical fusion ICS
Foley et al., 2008 116/125 104/120

0.25 2.34 (1.33–4.10); p = 
0.003Coric et al., 2018 201/217 76/92

Overall (95% CI) 92.4% (89.4–95.0%) 84.6% (79.5–89.1%)

Lumbar or lumbosa-
cral fusion DCS

Kane, 1988 208/229 143/187

13.60 2.13 (1.08–4.21); p = 
0.030

Meril, 1994 113/122 77/103
Rogozinski & Rogozinski, 1996 51/53 35/41
Kucharzyk, 1999 62/65 56/65
Jenis et al., 2000 10/17 18/22
Andersen et al., 2009 17/48 12/36
Overall (95% CI) 82.2% (65.8–94.1%) 73.9% (61.7–84.4%)
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TABLE 5. Random-effects subgroup meta-analysis of the clinical data*

Variable
Type of 

EST Authors & Year
Fusion Rate (no. fused/total) Cochran’s 

Q
OR (95% CI) &  

p ValueStimulation Group Control Group

Lumbar or lumbo-
sacral fusion 
(cont’d)

CCS
Goodwin et al., 1999 77/85 77/94

0 2.12 (0.87–5.21);  
p > 0.05Overall (95% CI) 90.6% (82.3–95.8%) 81.9% (72.6–89.1%)

ICS

Mooney, 1990 59/64 36/53

15.90 2.84 (0.76–10.72);  
p > 0.05

Marks, 2000 41/42 10/19
Jenis et al., 2000 14/22 18/22
Linovitz et al., 2002 66/104 48/97
Overall (95% CI) 81.6% (59.9–96.0%) 62.2% (47.6–75.7%)

All Overall (95% CI) 82.9% (72.3–91.4%) 70.9% (61.6–79.4%) 29.68 2.25 (1.34–3.80); p = 
0.002

Autograft

DCS

Kane, 1988 208/229 143/187

8.86 2.03 (0.73–5.65);  
p > 0.05

Meril, 1994 51/53 35/41
Kucharzyk, 1999 62/65 56/65
Jenis et al., 2000 10/17 18/22
Overall (95% CI) 89.4% (79.7–96.2%) 80.4% (75.1–85.2%)

ICS

Mooney, 1990 23/25 14/19

10.07 2.88 (0.28–29.58);  
p > 0.05

Marks, 2000 19/20 5/11
Jenis et al., 2000 14/22 18/22
Overall (95% CI) 84.0% (63.6–97.0%) 68.9% (49.5–85.3%)

All Overall (95% CI) 87.4% (78.9–93.9%) 78.5% (72.0–84.4%) 19.39 2.14 (0.85–5.37);  
p > 0.05

Allograft ICS

Mooney, 1990 25/27 16/22

2.28 2.86 (1.18–6.95);  
p = 0.02

Marks, 2000 11/11 4/7
Foley et al., 2008 116/125 104/120
Overall (95% CI) 92.8% (88.3–96.2%) 76.7% (59.2–90.4%)

With instrumentation

DCS

Meril, 1994 24/24 51/63

9.15 2.25 (0.50–10.1);  
p > 0.05

Rogozinski & Rogozinski, 1996 51/53 35/41
Kucharzyk, 1999 62/65 56/65
Jenis et al., 2000 10/17 18/22
Overall (95% CI) 91.4% (77.7–98.9%) 83.2% (77.6–88.1%)

ICS

Mooney, 1990 44/48 28/39

7.37 1.92 (0.94–3.93);  
p > 0.05

Marks, 2000 9/10 1/1
Jenis et al., 2000 14/22 18/22
Foley et al., 2008 116/125 104/120
Coric et al., 2018 201/217 76/92
Overall (95% CI) 88.5% (81.4–94.1%) 82.4% (77.3–86.9%)

All Overall (95% CI) 89.8% (83.8–94.6%) 82.8% (79.3–86.1%) 16.44 1.94 (1.01–3.73);  
p = 0.05

Without instrumenta-
tion

DCS

Kane, 1988 208/229 143/187

5.92 2.64 (1.20–5.81);  
p = 0.02

Meril, 1994 89/98 26/40
Andersen et al., 2009 17/48 12/36
Overall (95% CI) 75.9% (45.3–96.3%) 59.3% (34.1–82.2%)

ICS

Mooney, 1990 15/16 8/14

8.07 7.71 (0.86–69.38);  
p > 0.05

Marks, 2000 32/32 9/18
Linovitz et al., 2002 66/104 48/97
Overall (95% CI) 88.2% (54.7–99.9%) 50.4% (41.9–58.9%)

All Overall (95% CI) 82.2% (63.7–95.0%) 56.0% (40.7–70.7%) 14.03 3.01 (1.56–5.84); p = 
0.001
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we also consider the safety of the technology. Our review 
mainly addresses the first of these questions—namely, 
whether electrical stimulation is an effective means of 
promoting bony fusion. On the whole, our results suggest 
that the answer to this question is yes, as the results of our 
pooled analysis demonstrated significantly higher odds of 
fusion in patients treated with electrical stimulation (OR 
2.26, p < 0.001). However, more in-depth investigation 
suggests that the majority of these results are driven by 
DCS and ICS. Between these 2 technologies, though, there 
appears to be no difference in efficacy.

This brings us to considering the questions of econom-
ics and safety profiles: 1) Are ICS and DCS economical 
means of promoting bony fusion? 2) Are they safe? The 
latter is most easily answered as both implantable DCS 
and noninvasive ICS devices have been approved under 
the relatively stringent FDA premarket approval process 
(class III devices) based on results of randomized con-
trolled trials.5,34,47,53,57,72 The former question, i.e., whether 
the DCS and ICS devices are economical, is one that is 
harder to answer.

At present there are no high-quality studies evaluating 
the cost-effectiveness of electrical stimulation devices in 
the spine literature. However, back-of-the-envelope calcu-
lations are possible using estimates of device cost, pseud-
arthrosis rates, and cost of revision surgery. Prior stud-
ies of pseudarthrosis have found that the direct surgical 
costs of a revision operation are approximately $21,113 ± 
$11,895 for cervical operations58 and $28,069 ± $2508 for 
lumbar operations.2 To a gross approximation, this reduces 
to $25,000 per reoperation. Based on the present results, 
the approximate pseudarthrosis rate among patients re-
ceiving electrical stimulation therapy is 15%, compared 
to 27% in the control population. Of these patients, ap-
proximately half may require surgical revision for pseudo-
arthrosis.24,45,61,62,80 Accounting for this, the cost of surgical 
revisions for pseudarthrosis averaged across patients re-
ceiving electrical stimulation therapy is $1875, compared 
to $3375 for controls. For patients receiving electrical 
stimulation therapy, though, the cost of the stimulation de-
vice is an estimated additional $4000–$5000. Therefore, 
from a strictly financial standpoint, electrical stimulation 
devices may be a cost-ineffective means of improving fu-
sion rates, except in patients with a high risk of nonunion.

The overall risk of pseudarthrosis among patients with 
difficult-to-fuse spines—commonly defined as those in 
whom prior fusion has failed, smokers, and those undergo-
ing multilevel fusion procedures—has been reported to ex-
ceed 40%.5,13,18,57,62 Accordingly, the cost of revision opera-
tions averaged across these patients may exceed $10,000, 

suggesting that the use of electrical stimulation devices in 
this patient population may be cost-effective. Consistent 
with this, Medicare—the largest single insurer in the US—
covers these devices only for patients with a history of mul-
tilevel fusion or a history of one or more prior failed fusion 
operations. This analysis does not consider the effect of 
nonunion on indirect costs, namely, days of lost work and 
decreased quality of life; however, it is likely that consider-
ation of indirect costs will only increase the cost-effective-
ness of these stimulation devices. Additional, high-quality 
investigation is warranted to evaluate this point.

Study Limitations
There are several limitations to this study. First, we were 

forced to exclude 6 preclinical and 3 clinical studies from 
the meta-analysis as they lacked control groups for estima-
tion of odds ratios. This produces a potential selection bias 
that may limit the generalizability of the data. Second, the 
results of the study are based on a combination of pro-
spective and retrospective studies. Retrospective studies 
are limited in the quality of the data they provide, which 
consequently limits the generalizability of the results of 
the present study. Nonetheless, we evaluated the quality 
of the clinical studies included in the meta-analysis (us-
ing the Critical Appraisal Checklists) and deemed each to 
have sufficient quality to be included in the present review. 
Additionally, although we provide estimates of the over-
all effect of electrical stimulation therapies at large and in 
subgroups, the heterogeneity of the included studies pre-
vents us from answering the following questions: 1) Which 
patients will benefit most from electrical stimulation tech-
nologies? 2) For how long should treatment be continued? 
Furthermore, the definition of fusion varied between stud-
ies, suggesting that the outcome may have been distinct 
across studies, which would limit the validity of our meta-
analysis. We describe this heterogeneity by presenting the 
definition and method of assessment of spinal fusion used 
by each study. All clinical studies employed plain radio-
graph– or CT scan–based radiological assessment, both 
of which are considered valid techniques in the clinical 
literature. Although a CT scan provides higher-resolution 
imaging and is therefore often considered the gold stan-
dard for fusion assessment, relative to standard radiogra-
phy it is more expensive, exposes the patient to high radia-
tion levels, and often provides no additional information.33 
Nevertheless, the different assessment modalities impart 
heterogeneity to the results, which we attempted to address 
by employing random-effects versus fixed-effects models. 
Lastly, we pooled the results of several different electrical 
stimulation technologies. Though our results suggest that 

TABLE 5. Random-effects subgroup meta-analysis of the clinical data*

EST = electrical stimulation technology. 
Boldface type indicates statistical significance.
* Only studies reporting the fusion rates for both the intervention (i.e., electrical stimulation) and control groups were included in the meta-analysis.
† These studies included only patients with known risk factors for pseudarthrosis: 1) age > 60 years;5 2) failed prior fusion, grade II or worse spondylolisthesis, multilevel 
fusion, and/or other high-risk medical condition (e.g., gross obesity) (select cohort within study);57 3) multiple prior spine surgeries, failed prior fusion, segmental instabil-
ity, spinal stenosis, and/or spondylolisthesis;60 4) age ≥ 65 years, active smoker, multilevel fusion, prior failed fusion, diabetic, and/or osteoporotic;26 or 5) active smokers 
and/or multilevel fusion.34
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ICS and DCS have similar effects, they employ distinct 
technologies and have widely different patient compliance 
levels given that the latter is an implanted device, whereas 
the former is a wearable device. It is therefore possible that 
limitations in patient compliance among the ICS group 
limited the ability of our analysis to see differences in ef-
ficacy between the technologies. Given these limitations, 
it is apparent that future studies are necessary to direct-
ly compare the effectiveness of these different electrical 
stimulation technology modalities.

Conclusions
Here we report the results of the first systematic review 

and meta-analysis analyzing the effectiveness of electri-
cal stimulation devices on spinal fusion in the preclinical 
and clinical literature. We found that these devices lead to 
significant increases in fusion rates, with a nearly fivefold 
increase in the odds in preclinical studies and a more than 
twofold increase in clinical studies. Subanalysis suggested 
that among the clinical population, DCS and ICS lead 
to significant decreases in pseudarthrosis rates, whereas 
CCS does not. Additional research is needed to analyze 
the cost-effectiveness of electrical stimulation devices to 
identify those patients in whom these devices are likely 
to be not only practically effective but also cost-effective.
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